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Introduction 
 Many industries rely upon a comprehensive understanding of fluid dynamics for their 
functioning. Modeling the behavior of fluids such as air, water, exhaust gases, steam, and a myriad of 
others is critical for the high efficiencies of modern technologies. Before the advent of computational 
fluid dynamics (CFD), experimental results and empirical rules reigned over a fluid dynamicist’s life; 
however, around the 1950s computers began to have enough power to numerically solve the famous 
Navier-Stokes equations, which govern the motion of incompressible fluids yet lack a closed-form 
analytical solution. At that time, engineers in the nascent field of CFD worked to improve the efficiency, 
stability, and accuracy of the different methods used to solve the equations. Eventually, CFD developed 
to a stage where industry could adopt it, and it has become a cornerstone of modern design. CFD is now 
used in all aspects of industry ranging from medical devices to model blood flow within arteries1,  naval 
engineering to model cavitation over a submarine propeller, or the classic example of aviation for 
airflow over a wing. Companies such as Ansys create commercial solvers which modern engineers can 
use without thorough understanding of the calculations behind the scenes. To learn more about the 
inner machinations of commercial CFD solvers, a simple finite volume CFD solver was written in Python 
3.10.10 to solve the flow field properties over the top half of a diamond airfoil experiencing supersonic 
flow.  

Problem Formulation 
 Mesh creation was not part of this analysis. Three, 2D, structured, quadrilateral meshes 
representing the air over the airfoil were provided and read into Python. These meshes all represented 
the same geometry, but with varying degrees of fineness. The medium density mesh is displayed in 
Figure 1, and is the only relevant mesh for this analysis. 

 

Figure 1: Medium Density Mesh from Project Problem Statement  

As visible in the bottom left of Figure 1, in addition to the standard x, y Cartesian coordinate system, a 
generalized, body-fit “𝜉, 𝜂” coordinate system was also specified. This is the generalized coordinate 
system referenced below. Certain cell area metrics were required to characterize the mesh and calculate 
relevant fluxes and time-steps for each cell, as will be discussed. These cell area metrics, including 
projected cell face area and cell volume (in 2D they are projected side length and cell area), were 

                                                           
1 Note: the Stokes Hypothesis underlying the NS equations does not hold for non-Newtonian fluids such as blood. 



calculated as described in the Topic 24.2 notes. To finalize the mesh preprocessing, halo cells needed to 
be added to allow for boundary condition enforceability. The halo cells are visible in Figure 2, outside of 
the black outlines.  

 

Figure 2: Medium Density Mesh with Halo Cells 

To initialize the solution vector, the initial conditions specified in the project statement of Mach 2 
horizontal flow at 300K and 101.325 kPa were used. That initial condition was also used as the constant 
inlet boundary condition, which was re-enforced after every iteration of the solver. The outlet boundary 
condition was enforced using first order extrapolation, per the problem statement. The boundary 
condition along the top wall, and the bottom walls that did not include the airfoil was an inviscid, 
adiabatic, slip-wall condition, representing streamlines in the freestream since no mass flow crosses 
through them. This was applied by solving the system of equations specified in the Topic 24.4 note and 
applying those conditions. The airfoil boundary conditions depended upon what case was attempted, 
out of the 5 specified in the problem statement. For this analysis, an adiabatic slip-wall condition was 
also applied to the airfoil, which is non-physical. The capability to enforce an adiabatic no-slip wall 
condition was also coded and will be discussed in the results section.  

 To model the flow field over the airfoil, the Navier-Stokes equations needed to be numerically 
solved, and to facilitate this, they needed to be written in a format that would allow easy coding. Thus, 
the equations were rewritten in standard vector form as described by the Topic 3 class notes, using 
generalized coordinates per the Topic 4 notes. Note, that while it is possible to use non-dimensional 
forms of the NS equations, all terms and equations in this analysis were dimensional in standard SI units. 
Once in this format, summarized by Eqn. 1 in the Topic 24.1 notes, either a finite volume or finite 
difference method could be implemented after combining the N-S equations with the ideal gas law to 
relate different states of the gas and make the system of equations determinant. For simplicity, the 
solver was first implemented without any viscous terms, and all terms referred to henceforth are 
convective. For this solver, a finite volume method was chosen to ensure that the discontinuity at the 
shockwave could be captured, since finite difference methods assume continuous differentiability. To 
ensure that the system of equations was stable, the implemented solving scheme needed to be ‘total 
variation diminishing,’ which essentially prevents non-physical oscillations from growing and 
propagating in the solution. A scheme with this property called the “Monotone Upwind Scheme for 
Conservation Laws” or MUSCL scheme, was implemented. A MUSCL stencil which allows for selecting 



different orders of interpolation accuracy was chosen, as described in Equations 11 & 12 in the Topic 25 
notes.  

 Fundamentally, a finite volume solver stores values at cell centers (in a mesh) and interpolates 
gas state values to cell faces to approximate the flux over each face in a cell. Then, taking the integral of 
all the fluxes across the surfaces over a given timestep dictates how the gas state values in that cell 
should change. Thus, to implement the solver the fluxes over each face of the mesh needed to be 
calculated and stored. For this solver, the Roe flux vector differencing (FVD) scheme was selected to 
calculate the fluxes, as opposed to a flux vector splitting scheme such as Steger-Warming. The Roe FVD 
scheme uses ‘Roe average’ values of the primitive variables such as pressure, temperature, density, etc. 
to account for the discrepancy seen when interpolating the solution vector at a given cell face from 
either the left or the right adjacent cells. These Roe averaged terms, whose formulas to calculate them 
from the left and right state primitive variables are located at the end of the Topic 23 notes, were 
derived such that they exactly conserve mass, momentum, and energy across the cell interfaces and 
satisfy the Rankine-Hugeniot relations when a shock is present [Topic 23]. With the Roe averaged values, 
and the knowledge that the flux vector is homogenous with respect to the solution vector Q, the flux 
vector can be represented as a product between its Jacobian with respect to Q, and Q. Identifying this 
Jacobian, denoted A, was integral in enabling a stable solution, since the Jacobian could be diagonalized 
into the product of L1, Lambda, and R1, where L1 and R1 are the left and right eigenvectors of A and 
Lambda is a diagonal matrix of the corresponding eigenvalues. The analytical forms of these matrices 
are shown in the Topic 26.1 notes, and they were incorporated into the code exactly as written. With 
the eigenvalues exposed in Lambda, they could be manipulated such that regardless of if the flow is 
supersonic, subsonic, or flowing left or right the scheme would always be ‘upwind’ and thus not 
unconditionally unstable. The final equation to calculate the fluxes per the Roe FVD scheme is Eqn 8 in 
the Topic 25 notes, which was implemented in both the 𝜉and 𝜂 generalized directions.  

 Once the fluxes were calculated, the maximum allowable time-step for each cell was calculated 
per the procedure in the 24.3 notes. Since this was a steady-state problem and not a transient, time-
accurate problem, local time-stepping could be used, which means each cell is changed by the maximum 
amount possible while remaining stable. Finally, with the fluxes and the time-steps all calculated, Eqn 1 
from the Topic 24.1 notes was used to progress the solution towards steady state. This was repeated 
until the 𝐿ଶ and 𝐿ஶ convergence metrics approached machine accuracy, which for Python is 1e-16 since 
Python is in double precision by default.  

 For the higher order schemes, the values of epsilon and kappa in the MUSCL stencils described 
by Equations 11 & 12 in the Topic 25 notes were modified. All the schemes possible with the different 
combinations of epsilon and kappa were attempted, but only the second order fully upwind scheme and 
the third order QUICK scheme converged without a flux limiter. The epsilon and kappa values to achieve 
those two schemes are (1, -1), and (1, 1/2), respectively. Several the flux limiters described in the Topic 
18 notes were implemented and ran through a DoE to determine stability. However, none were stable in 
the original rudimentary implementation, and further reading of the Topic 25.1 and 25.2 notes would be 
necessary to implement flux limiters based on the velocity or pressure of the flow.  

Results and Discussion 
Figures start on the next page.



 

Figure 3: First Order Accurate Solution 

 

Figure 4: Second Order Accurate Full Upwind Scheme Solution 



 

 

Figure 5: Third Order Accurate QUICK Scheme Solution2 

Table 1: Comparison Between Numerical and Analytical Solutions for the Oblique Shock 

 Wave Angle M2 P2/P1 𝜌2/𝜌1 T2/T1 𝑃௧2/𝑃௧1 
Analytical Solution 39.31 1.641 1.707 1.458 1.170 0.9846 
1st Order Solution 35 1.632 1.693 1.441 1.175 0.9642 

Percent Error -11% -0.557% -0.829% -1.147% 0.389% -2.073% 
2nd Order Full 

Upwind Solution 34 1.641 1.710 1.462 1.170 0.987 

Percent Error3 -13.5% 0.005% 0.173% 0.283% -0.043% 0.286% 
3rd Order QUICK 

Solution 35 1.647 1.698 1.455 1.167 0.9891 

Percent Error -11% 0.365% -0.540% -0.210% -0.263% 0.455% 

                                                           
2 Very high-fidelity versions of these plots are included in the supplemental materials. They can be zoomed in without loss of quality.  
3 Percent errors were calculated before rounding 



The three cases that will be discussed include a first order accurate upwind solver, a second 
order accurate fully upwind solver, and a third order accurate QUICK scheme, all without flux limiters, 
assuming inviscid flow, and with an adiabatic slip wall condition, as shown in the above plots 

First Order Solution 
The first order solution for the flow field, as visible in Figure 3, is highly dissipative and smears 

the shockwave dramatically after it initially forms at the leading edge of the airfoil. First order accuracy 
is generally required around a shockwave to handle the large gradients at that point; however, since it is 
only first order accurate, the solution gets smeared as the high dissipation of the scheme acts like an 
artificial viscous term and tries to remove large gradients. Note, in the convergence plot of Figure 3, the 
solution converged at around 600 iterations, which is much faster than the other two schemes. The first 
order solver was stable with a maximum CFL of 0.97 compared to a CFL of approximately 0.1 for the 
other two schemes, which translates to a larger timestep and faster convergence. Also visible in the 
convergence plot, the residuals only decayed to around 10-14, which is slightly larger than machine 
accuracy. It is unknown why this scheme would not converge to machine accuracy, but the other ones 
would get closer. Table 1 shows a comparison between the analytical, ideal-gas, compressible-flow, 
oblique shock solution, and the numerical solutions achieved with the various schemes. Looking at the 
data for the first order scheme, everything except the shock angle is accurate to within ±2%, measuring 
the post-shock values at Cartesian coordinates of (0.3, 0.1). This accuracy is encouraging, but that is a 
highly local phenomenon. As visible in the plot, as the shockwave continues out past the airfoil it rapidly 
decays from the ideal analytical solution. In reality, the shockwave would eventually dissipate, but not as 
quickly as shown in the figure. Thus, while the numerical first order solution is accurate close to flow 
disturbance (airfoil), the solution artificial viscosity of the solution leads to non-physical results above 
the airfoil. The second major inaccuracy here is the wave angle, which is 11% lower than the analytical 
solution. This inaccuracy occurred for all schemes, and it is unknown why this happened, especially since 
the rest of the results are much more accurate. Thus, caution must be taken using this CFD solver if the 
wave angle is important to the analysis, such as when designing supersonic inlets with shock reflections.  

Second Order Solution 
The second order solution to the flow field is much less dissipative than the first order solution. 

The shock wave continues out to the end of the mesh, and a more defined wave front is visible within 
the shock itself. The convergence plot in Figure 4 shows that the second order scheme converged to 
~1e-16 accuracy in about 1700 iterations. It is unknown why this scheme was able to converge to a 
greater level of accuracy than the first order scheme. The convergence speed of this scheme was much 
lower because, as previously mentioned, the CFL was dropped by around an order of magnitude to 
make the scheme stable. The solution to this scheme was seeded with the results from the first order 
solver to facilitate quicker convergence and ensure that the initial conditions were not too far from 
reality such that the solver could not handle it. Given that the CFL needed to be lowered to ensure 
stability, the second order solution is inherently less stable than the first order solution. This stability 
issue is slightly remedied with flux limiters, which were briefly touched upon in this analysis. Compared 
to the analytical solution, this was the most accurate solver out of the three attempted. Excluding the 
shock angle, the solution was accurate to within 0.3%, measured at the same cartesian coordinates. 
Furthermore, this accuracy likely extends out further past the airfoil since the solution is much less 
dissipative than the first order solution and the shock extends to the bounds of the mesh instead of 



decaying. The shock angle, however, is again off by >13%, indicating the issue seen with the first order 
solution is not exclusive to the first order solver.  

Third Order Solution  
The third order QUICK scheme solution is like that of the second order scheme. Again, the 

shockwave continues to the mesh boundaries and a very defined shock front is visible in the plots, even 
more defined than the second order solution. The convergence plot in Figure 5 indicates that the 
solution converged to the order of 1e-15, which again is slightly off machine accuracy, and different than 
the convergence values for both the first and second order solutions. The CFL was again set to 0.1 to 
ensure stability. The third order solver was seeded with the first order solution to speed up 
convergence, and run multiple times, so the true convergence time was likely around 5,000 iterations, 
not 1,000 as the convergence plot demonstrates. As was the case with the previous two schemes, the 
wave angle has the largest deviation from the analytical solution, at 11% lower. However, the other 
values are all within 0.5% of the analytical solution, again indicating the accuracy of the solution. The 
third order solution is slightly less accurate than the second order solution at the coordinates measured. 
It is possible that this is an artifact of where the post shock conditions were sampled. 

 

Figure 6: 2nd Order Post-Shock Property Sample Location (x = 0.3, y = 0.1) 

   

 

Figure 7: 3rd Order Post-Shock Property Sample Location (x = 0.3, y = 0.1) 

Figure 6 shows the cell from which post shock properties were sampled in dark blue with the second 
order scheme as the background, and Figure 7 shows the same cell but with the 3rd order scheme as the 



background. As evident from the figures, the second order scheme seems to have a less well defined 
shock front, since the dark blue cell is located within the larger dark red area. However, for the third 
order solution, the shock front is very well defined as the dark red area and then the rest of the space 
immediately behind the shock is a lighter red. Given how close the solutions are to the analytical 
solution, the 0.5% margin of error for the second or third order solution could be explained by choosing 
a different measurement location after the shock.  

Minmod Flux Limiter 

 

Figure 8: 2nd Order Accurate Solver with Minmod Flux Limiter 

 Flux limiters attempt to enforce the total variation diminishing property in higher order 
schemes. A basic minmod flux limiter was implemented in the second order scheme, with the results 
shown in Figure 8. As can be seen, this solution was oscillatory in nature, and the convergence plot (not 
shown) settled on residuals on the order of 1 and oscillated there. While not successful as a solver, this 
was an excellent visualization of non-physical, numerical artifacts within the solution borne as a result of 
the solving scheme and not the underlying physics. The pressure waves propagating in Figure 8 would 
likely be fixed by implementing the flux limiter as described in the Topic 25.1 and 25.2 notes, but this 
was not done due to time limitations.  

No-Slip Boundary Condition 
The no-slip viscous wall boundary condition can be applied to the airfoil in the code as an option 

at runtime. However, this led to convergence issues for the higher order solvers. The first order solver 
converged with a no-slip wall condition, but due to the artificial dissipation of the solution, and the lack 
of real viscous terms, the difference adding the no-slip viscous boundary condition was negligible, as 
shown in Figure 9. 



 

Figure 9: First Order Solution on the High Density Mesh with a No-Slip Airfoil Wall 

The results of a no-slip wall and including the entire NS equations, not just the simplified Euler 
equations, should be explored further in future work.  

Conclusions 
 Of the three solvers created, the second and third order accurate solvers were both of 
comparable accuracy within the given mesh domain compared to the analytical solution. The first order 
solver was highly dissipative, decaying and smearing the shock within the small domain of the mesh. The 
second and third order solvers propagated the shock with a defined front, out to the mesh outlet. The 
third order solver had the highest fidelity shock front. For a better comparison of the second and third 
order solvers, a larger domain should be generated and solved, such that the larger effects of the solvers 
can be seen. All the solvers had issues predicting the shock angle, underpredicting the analytical angle of 
39.31 degrees by around 11%. It is unknown why all three solvers underpredicted the wave angle so 
dramatically, yet were within 2% of the expected post-shock conditions for a turn angle of 10o.  

 The solvers shown were all without flux limiters and for inviscid flow, solving the Euler 
equations. Future work should expand the Euler equations to the full Navier-Stokes equations, modeling 
the flow viscosity as well. This would enable the no-slip boundary condition to apply, which is a physical 
condition enforced by viscosity. Furthermore, the higher order schemes require flux limiters to enforce 
the TVD property, which would enable more than just the second order full upwind and the third order 
QUICK scheme to be stable, such that their results could be compared as well.  

 Overall, pyCFD was a good learning experience for the author, requiring a strong grasp of Python 
coding principles to ensure that the code would run in a reasonable amount of time and be easily 
refactorable and comprehensible.  


